Nastanak Suncevog sistema
Prikaz rezultata 1 do 5 od ukupno 5
  1. #1

    Nastanak Suncevog sistema

    1. UVOD

    Od svojih prvih dana čovek je težio da otkrije odakle vodi poreklo, kako je nastao, i naravno, zašto uopšte postoji.Ta najstarija čovekova želja, želja za saznanjem nečeg novog, navela ga je na razmišljanje i proučavanje ne samo nastanka ljudske vrste, već on ide još dalje u prošlost, u vreme nastanka Zemlje, Sunca, pa čak i samog Univerzuma. Većina ljudi živi svoj svakodnevni život gotovo i ne misleći o stvarima koje nas okružuju, na materiju oko nas. Retko ko razmišlja o tome od čega je sastavljena svetlost Sunca, svetlost koja nam omogućava da živimo i budemo ovakvi kavi smo. Još manje je onih koji razmišljaju o prirodi gravitacije. Naravno, Zemlja, Mesec, Sunce su ogromna tela, mnogo puta veća od nas, ali postoje i sitne čestice, važnije i od Sunca i od nas samih, čestice od kojih smo sazdani i mi i Sunce i od čije stabilnosti zavisimo.

    Podjednako "udaljeni" i od atoma i od zvezda mi proširujemo naše istraživačke vidike da bi smo sagledali i ono što je suviše malo i ono što je suviše veliko. Da bi odgovorili na mnoga pitanja koja nas okružuju mi gradimo slike sveta.

    Zavisno od razvijenosti, ili bolje rečeno nerazvijenosti ljudskog društva ljudi su gradili sopstvene slike njima poznatog sveta. Način tumačenja sveta oko nas prilično se menjao kroz istoriju. Počelo se od tumačenja Zemlje kao ravne ploče, a stiglo da hipoteza o Veikom prasku, a o tome šta će se dešavati u budućnosti ne možemo ni da zamislimo.

  2. #2

    Odgovor: Nastanak Suncevog sistema

    SUNCE
    (naš tvorac i uništitelj)


    Da bi Sunčev sistem mogao da nastane prvo je morala da se formira zvezda, tj. Sunce, a tek kasnije pod uticajem gravitacije Sunca mogli su da nastanu i ostali stanovnici Sunčevog sistema. Prema tome, priču o poreklu Sunčevog sistema počinjemo od perioda kada se rađalo Sunce.

    Gasni oblak



    Pre oko 4,5 milijarde godina gasni oblak, od koga će kasnije nastati Sunce imao je prečnik od preko 480 triliona kilometara, tj. približno 50 svetlosnih godina (ili 40 miliona puta veći prečnik nego prečnik današnjeg Sunčevog sistema). Ovaj gasni oblak uopšte nije bio gust, sadržao je nekoliko hiljada atoma po kubnom santimetru. Ukupna masa ovog oblaka bila je dovoljna za nastanak nekoliko solarnih sistema. Njegova temperatura bila je približna temperaturi međuzvezdanog gasa, tj. bila je reda veličine od 3 K. Gasni oblak uopšte nije emitovao svetlost u okolni prostor. U nestabilnom ravnotežnom stanju oblak je imao samo dve mogućnosti ili da se sve više i više širi i raspada u međuzvezdanom prostoru, ili da počne da se sažima. Konačno ravnoteža je narušena i usled gravitacionog privlačenja u nekim delovima oblaka došlo je do zgušnjavanja i sve većeg sažimanja.

    Globule

    Posle nekoliko hiljada godina nastale su globule, mesta na kojima je slučajno došlo do gravitacionog sažimanja materije gasnog oblaka. Temperatura oblaka se sporo povećavala; još nije bilo uslova da oblak počne da emituje svetlost. Kasnije je jedna od ovih globula, čiji je prečnik bio nekoliko hiljada puta veći nego prečnik današnjeg Sunčevog sistema, postala Sunce. Globule su nastavile da se sve više i više sažimaju dok se njihova temperatura konstantno povećavala.

    Protozvezde

    Za narednih 400.000 godina globule su se sabile na milioniti deo njihove prvobitne zapremnine, ali i dalje 4 puta veće od današnjeg Sunčevog sistema. U centru globula počelo je da se stvara jezgro. Sve više i više zagrevano gravitacionim sažimanjem postalo je sposobno da počne da emituje energiju u ređe, spoljne slojeve globule. Zračenje koje je jezgro emitovalo počelo je da usporava sažimanje materije. Od prvobitnog jezgra nastalo je stabilno i jasno izdvojeno telo koje se naziva protozvezda ili protosunce. Sa rođenjem protosunca evolucija zahvaćenog materijala je postala brža. Za nekoliko hiljada godina ono se smanjilo na prečnik današnje orbite Marsa. Temperatura u unutrašnjosti popela se na 56.000 K a to je prouzrokovalo jonizaciju atoma. Crvena svetlost koja je emitovana sa površine protosunca nije nastajala fuzijom atomskih jezgra nego je bila uzrok gravitacionog sabijanja materije. Polovina oslobođene oslobođene energije odlazila je u okolni prostor, a druga polovina trošena je na zagrevanje jezgra.

    Sunce



    Protosunce se sve više i više sažimalo, dok nije dostiglo dovoljno veliku temperaturu da u njemu otpočne proces fuzije deuterijuma u helijum-3. Tokom faze sažimanja Sunce je bilo potpuno homogeno. Kad je počela fuzija deuterijuma, momentalno je usporeno sažimanje. Kako se Sunce i dalje sažimalo, temperatura u njegovom centru je sve više i više rasla. Sa paljenjem vodonika protosunce je postala zvezda, koju karakteriše gravitaciono stabilan fuzioni reaktor u njenom jezgru. Kako su nuklearne reakcije počele da oslobađaju ogromne količine subatomske energije, Sunce je postalo promenjiva zvezda; varirali su njen sjaj i površinska aktivnost kao rezultat razvoja jezgra i konvektivne zone. Nakon razdoblja od oko 30 miliona godina struktura novorođenog Sunca se stabilizovala, i ono je postalo onakvo kavo ga mi danas vidimo.

    Sunce je trenutno na polovini razdoblja svoje stabilne faze. U centru Sunca u svakoj sekundi 5 milijardi tona vodonika pretvara se u helijum. Ta brzina sagorevanja može da nas uplaši, ali nema opasnosti da će Sunce ubrzo ostati bez svog vodoničnog goriva. Ovakvo kakvo je danas trajaće još oko 4,5 milijardi godina a onda će početi polako da ulazi u poslednje razdoblje svog života i na kraju će se ugasiti.

  3. #3

    Odgovor: Nastanak Suncevog sistema

    HIPOTEZE O NASTANKU PLANETA

    Laplasova teorija magline

    Teoriju o nastanku Sunčevog sistema, zasnovanu na solarnoj maglini, prvi je predložio filozof Emanuel Svedenborg, 1734 godine, ali je kasnije Imanuel Kant bolje obradio ovu teoriju i objavio je 1755 godine u svom delu Opšta teorija prirode. Obe teorije bile su prvenstveno zasnovane na nagađanjima. Prvu široko prihvaćenu naučnu teoriju o postanku Sunčevog sistema dao je Laplas 1796. godine. On je smatrao da su Sunce i planete nastale istovremno u kolapsu oblaka međuzvezdanog gasa i prašine.



    Laplas polazi od toga da Sunce, planete i njihovi sateliti vode poreklo od nekadašnje razređene, usijane i gasovite mase koja je vršila rotaciono kretanje, o uzrocima rotacije Laplas ne govori, već ih smatra za postojeću činjenicu.

    Laplas je počeo da piše o istoriji Sunčevog sistema od trenutka kada je u centru rotirajuće magline došlo do zgušnjavanja usled dejstva sile uzajamnog privlačenja. Ovo centralno zgušnjavanje bilo je prvobitno Sunce. Na samom početku mlado Sunce bilo je okruženo razređenom, gasovitom i usijanom maglinom. Ona je bila ogromna, prostirala se daleko iza orbite Plutona.

    Laplas je smatrao da se cela ova maglina obrtala ravnomerno, kao što rotiraju čvrsta tela, tako da su tačke koje su bile bliže unutrašnjosti opisivale manje krugove i kretale se manjom linijskom brzinom od onih na perifernom delu magline. Što se neka tačka magline nalazi dalje od centra veća je njena brzina i jača centrifugalna sila, a istovremeno sila privlačenja je manja. Na određenom rastojanju od centra ove dve sile se izjednačavaju po intenzitetu. To rastojanje predstavlja granicu magline. Delovanje centrifugalne sile na čestice iza ove granice će nadvladati delovanje privlačne, gravitacione, sile i ove čestice će biti otrgnute iz magline.

    Kako vreme prolazi maglina se postepeno hladi i sve više i više zgušnjava, istovremeno smanjuje se i njen prečnik. Smanjenje prečnika magline uzrokuje povećanje brzine rotacije (zakon održanja momenta impulsa). Sa smanjenjem dimenzija i povećanjem brzine rotacije magline, dejstvo centrifugalne sile postaje sve jače. Oblik magline se takođe menja iz loptastog maglina prelazi u sferoidni oblik, a zatim postaje sve više i više spljoštena. Vremenom zgušnjavajući se maglina je iza sebe ostavljala niz prstenova od kojih se svaki nalazio na orbiti jedne od budućih planeta. Svi prstenovi su se obrtali oko Sunca u istom smeru. Iz ovih tzv. Laplasovih prstenova obrazovale su se planete.



    Između čestica koje su sačinjavale prsten dolazilo je do uzajamnog privlačenja pa je on morao da postaje gušći. Ako bi prsten bio potpuno homogen zgušnjavanje bi se vršilo ravnomerno po čitavoj orbiti i u tom slučaju ne bi bio moguć nastanak planeta. Srećom, ovakav slučaj se sreće vrlo retko. Skoro uvek nastali prsten nije u potpunosti homogen i u njemu se stvara jedan ili više centara zgušnjavanja. Svaki od ovih centara gravitacijom privlači okolne čestice i postaje veći, na kraju svi ovi centri se i međusobno privlače, stapaju i formiraju planetu. Novoformirana planeta nastavlja da kruži oko Sunca isto onako kako su pre nje to činile i čestice prstena od kojih je nastala. Laplas ovde objašnjava i uzrok zbog čega planete rotiraju oko svoje ose. On ovo rotaciono kretanje objašnjava koja posledicu različitih linijskih brzina čestica koje su formirale planetu: sve čestice prstena su se kretale istom ugaonom brzinom oko Sunca, pa prema tome one na perifernom delu diska imale su veću linijsku brzinu od onih u unutrašnjem delu jer su za isti vremenski interval morale da prevale veći put.

    Na isti ovakav način nastali su i sateliti oko planeta. Oko planeta su se takođe odvajali prstenovi iz kojih su kasnije nastajali sateliti. Izuzetak je jedino bio poslednji unutrašnji Saturnov prsten koji je bio u potpunosti homogen. U njemu nije bio moguć nastanak planete nego je samo došlo do formiranja oromnog broja sitnih tela (na isti ovaj način Laplas je opisao i nastanak asteroidnog pojasa).

    Komete su prema Laplasovoj teoriji "gosti" Sunčevog sistema. On smatra da komete nisu nastale u Sunčevom sistemu, već su one tu došle iz udaljenih delova svemira. Laplas je smatra da su orbite kometa ili parabolične ili hiperbolične, tj. da nisu zatvorene, pa prema tome kometa koja dolazi iz bezgraničnog univerzuma samo jednom prolazi pored Sunca i odlazi bez povratka u nepoznatom pravcu. Da bi objasnio pojavu periodičnih kometa Laplas je zaključio da komete prilikom prolaska kroz Sunčev sistem takođe trpe i uticaj planeta koje ih ponekad primoraju da promene orbitu. Iz tog razloga orbite kometa postaju vrlo izdučene elipse i one počinju da se kreću oko Sunca i postaju deo Sunčevog sistema.

    Laplasova, kao i sve druge monističke teorije (teorije prema kojoj i Sunce i planete vode poreklo od istog materijala), predviđa da se moment impulsa sistema raspoređuje proporcionalno masi. Ovde se javlja jedan veliki problem rezultati posmatranja tela Sunčevog sistema daju nam rezultate koji su potpuno suprotni sa očekivanim. Naime, Sunce sa 99,86% mase sistema poseduje samo 0,5 % ukupnog momenta impulsa. Nekoliko decenija kasnije pojavio se i drugi problem. Najveću kritiku Laplasovom modelu uputio je Džejms Maksvel (James Maxwell) 1875. godine. On je tada proučavao Saturnove prstenove i zaključio je da ako bi Laplasova teorija bila tačna u ovim prstenovima moralo bi da dođe do gravitacionog privlačenja i nastanka malih, čvrstih tela čvrst prsten raspao bi se usled različite brzine rotacije, a gasovit prsten bi se raspršio prilično ravnomerno. Isti argument je primenjen i na prstenove u Laplasovoj teoriji, ti prstenovi morali bi da budu nekoliko stotina puta masivniji od planete koju treba da formiraju da bi bili stabilni.

    Godine 1854. u pokušaju da prevaziđe problem u vezi momenta impulsa Edvard Roše (Edouard Roche) je utvrdio da bi raspodela početne mase u Laplasovom modelu mogla da ne bude ravnomerno raspoređena, već veoma koncentrisana. U ravnomerno rotirajućem oblaku gasa sa masom raspoređenom na ovaj način kako je predvideo Laplas, onda bi moment impulsa centralnog tela bio mnogo manji. Zaista, ovo je bio presudni korak koji je omogućio da se moment impulsa koji se dobija na osnovu Laplasove teorije poklopi sa nalazima posmatranja. Početno vrlo gusto stanje može biti ostvareno ako se pretpostavi da posebno formirana zvezda kasnije gravitacijom zarobila planetarni materijal. Uvođenjem ovakvog procesa teorija postaje dualistička. Džems Džins (James Jeans) vratio se na Laplasovu teoriju sa koncentrisanom masom u centru magline 1919 godine. Koristeći argumente koje je koristio i Roše, on je dokazao, da bi u slučaju gustog centralnog tela, gravitaciono privlačenje nastale zvezde bilo veoma jako i sprečilo bi formiranje planeta iz okolnog materijala.

  4. #4

    Odgovor: Nastanak Suncevog sistema

    NASTANAK KOMETA


    Godine 1950. jedan holandski astronom, Jan Ort, postavio je hipotezu o postojanju jednog ogromnog oblaka oko Sunca koji je sačinjen od kometa. Najveća koncentracija kometa u ovom oblaku nalazi se na udaljenosti od 50.000 AU, odnosno 0,8 svetlosnih godina ili 1/5 udaljenosti do najbliže zvezde (daljina Plutona je 40 AU). Ovaj rezervoar kometa dobio je naziv Ortov oblak. Ovaj oblak postao je ključan pojam u svim hipotezama o poreklu kometa.


    Položaj Ortovog oblaka (levo) i Kuiperovog pojasa (desno) u odnosu na orbite planeta

    Velika većina kometa kreće se isključivo u ovom oblaku, na velikoj udaljenosti od Sunca, kome se nikad ne približava. Gravitacioni uticaj susednih zvezda deluje na oblak i ponekad to dovodi do toga da neke komete napuste ovaj oblak i približe se Sunčevom sistemu. Tek poneka od ovih kometa priđe dovoljno blizu Sunca da bi mogla da bude viđena i zabeležena kao nova kometa. Na osnovu broja zabeleženih novih kometa statistički se došlo do zaključka da u Ortovom oblaku mora da postoji oko 100 milijardi kometa, dok je ukupna masa ovih kometa nešto malo veća od mase jedne prosečne planete, kakav je na primer Uran.

    Postojanje Ortovog oblaka obično se razmatra u teorijama o zajedničkom poreklu kometa i Sunčevog sistema. Ali, ponekad se pominje i međuzvezdana teorija o nastanku Ortovog oblaka, prema kojoj je ovaj oblak, ustvari, nagomilana međuzvezdana prašina koju je Sunce privuklo tokom svog putovanja oko centra galaksije.

    Raspad Featona


    Ort je smatrao da je njegov oblak nastao raspadom hipotetičke planete Featon[1] koja se nalazila na orbiti između Marsa i Jupitera a njen vidljiv ostatak mogao bi biti asteroidni pojas. Ova teorija je od svojih prvih dana imala mnogo protivnika i do danas je u potpunosti napuštena. Najveći problem u ovoj teoriji predstavljao je uzrok koji je izazvao eksploziju planete. Jedan od mogućih uzroka eksplozije može da bude to što se Featon našao suviše blizu Jupiteru pa je usled ogromnog plimskog dejstva došlo do unutrašnjeg pregrevanja planete, a kasnije i do raspada.

    Prema jednoj drugoj, i nešto savremenijoj teoriji, Featon je bio 90 puta masivniji od Zemlje. Najveći deo ove planete je nakon eksplozije, u obliku asteroida, jezgra kometa ili meteorida, napustio Sunčev sistem. Jedan deo se zadržao na periferiji kao Ortov oblak, a jedan vrlo mali deo (hiljaditi deo mase) ostao je na staroj putanji. U prilog ovoj hipotezi ide to što se ponekad u asteroidnom pojasu otkrivaju kratkoperiodične komete sa orbitama bliskim kružnim.

    Kosmogonija Sunčevog sistema i nastanak kometa


    Danas je najšire prihvaćena teorija da su komete nastale istovremeno i zajedno sa ostalim delovima Sunčevog sistema, iz protosolarne magline, oblaka gasa i prašine iz koga su nastali Sunce i planete.

    Smatra da su komete sastavljene od najstarijeg materijala koji je postojao u Sunčevom sistemu i koji je vrlo malo izmenjen u toku proteklih 4,5 milijarde godina. Prema tome, one imaju ogroman značaj u našim nastojanjima da otkrijemo istoriju Sunčevog sistema. Po najprihvaćenijoj teoriji mala tela Sunčevog sistema, asteroidi i komete, su ostatci roja tela od kojih su se formirale planete. Asteroidi su kamenita tela unutrašnje zone, a komete ledena tela spoljašnje zone.

    Postoji nekoliko hipoteza o tome kako su komete nastale zajedno sa Sunčevim sistemom. Neki naučnici su smatrali da su postojala tzv. kometna zgušnjenja" od kojih su nastale ne samo komete, već i asteroidi i planete. Oni ovu tvrdnju orbrazlažu sličnostima u hemijskom sastavu kometa i međuzvezdanih maglina. Prema ovoj hipotezi mehanizam nastanka ovakvih zgušnjenja identičan je mehanizmu nastanka protozvezda. Takođe, oni tvrde da je verovatnoća nastanka velikih planeta direktnim zgušnjavanjem mnogo manja od verovatnoće njihovog nastanka u sudarima prvobitnih kometnih zgušnjenja.

    Prema drugoj vrsti hipoteza komete su nastale na rastojanju između 10 i 1000 AJ od Sunca, u spoljašnjoj zoni protosolarne magline i da su zatim izbačene u sferu na rastojanju od 50.000 AJ, tj. u Ortov oblak. Izbacivanje kometa na samu ivicu Sunčevog sistema, pa i van njega, bilo je uzrokovano time što su velike planete u poslednjem stadijumu svog rasta gravitacijom izbacivale značajan broj čvrstih tela izvan granica Sunčevog sistema (masa izbačenog materijala je za red veličine veća od mase koju je planeta prikupila). Jedan manji deo ovog izbačenog materijala ostao je na periferiji Sunčevog sistema i tu formirao Ortov oblak. Najveći deo mase izbacio je Jupiter, ali kometni oblak je uglavnom nastao od materijala koji su izbacili Neptun (oko polovine oblaka) i Uran zbog njihovog vrlo sporog rasta. Po procenama na osnovu ove hipoteze masa Ortovog oblaka trebala bi da bude 3 puta veća od mase Zemlje.

    Najveći nedostatak ove hipoteze je taj što ona predviđa da veći deo ovako izbačene materije u potpunosti napušta Sunčev sistem a da procene pokazuju da se u Ortovom oblaku nalazi veoma veliki broj kometa; u tom slučaju neophodno je da broj ovako izbačenih tela bude nerealno veliki. Jedan od najvećih savremenih stručnjaka za kosmogoniju Sunčevog sistema, Kameron sa Harvard Smitsonovog astrofizičkog centra nudi malo izmenjenu hipotezu. On smatra da su komete nastale tamo gde se i sad nalaze, na mestu današnjeg Ortovog oblaka. Komete su se tu formirale od fragmenata solarne magline koji nisu bili uključeni u prvobitno sažimanje i nastanak planeta. Treba napomenuti da je Kameron, iako je nastanak kometa izneo van granica Sunčevog sistema, jedan od utemeljivača planetezimalne teorije nastanka planeta (prema kojoj su planete nastale nagomilavanjem planetezimala, prvobitnih zgušnjavanja veličine od nekoliko milimetara do 1000 km). Teba još reći i to da ne postoji nikakva kvalitativna razlika između planetezimala kometnih dimenzija i kometnih zgušnjenja iz prvih teorija.

    To koja je od ovih hipoteza tačna, i da li je neka uopšte tačna, moći će da se sazna tek kada bude razvijen potpuno tačan model gravitacionog kolapsa međuzvezdanog oblaka u planetni sistem.

    Alfvenova hipoteza


    Poznati švedski fizičar i nobelovac Hanes Alfven izneo je početkom sedamdesetih godina prilično nestandardne hipotze o nastanku kometa.

    Svima je poznato da meteorski rojevi nastaju od materijala koji kometa gubi duž svoje orbite tokom brojnih obilazaka oko Sunca. Alfven se mnogo godina bavio fizikom plazme i pronašao je neke analogije između pojava u plazmi i česticama u međuplanetarnom prostoru, i na osnovu tih analogija predložio je novu hipotezu o nastanku kometa i meteorskih potoka.

    Alfven je našao i analogiju između meteorskog toka u promenljivom gravitacionom polju i snopa elektrona u promenljivom eletričnom polju. Ovakav snop teži grupisanju tako da mu gustina u pojedinim regionima može porasti za mnogo redova veličine. Na sličan način kao što dolazi do grupisanje elektrona u snopu moglo bi doći i do nastanka kondenzacija u meteorskom roju. Prema tome, Alfven govori o procesu obrnutom od prihvaćenog formiranje kometa iz meteorskih tokova!

    Analogije na koje je ukazao Alfven imaju veći principijalni nego konkretni kosmogonijski značaj. Delovanje ovih mehanizama sad se smatra nesumljivim, a njihova zastupljenost, pri formiranju planetarnog sistema, na primer, verovatno značajnom. Naša dosadašnja, još uvek nedovoljna znanja o gustinama meteorskih tokova ukazuju na to da se komete najverovatnije ne formiraju na ovaj način.

  5. #5

    Odgovor: Nastanak Suncevog sistema

    Teorije o međuzvezdanom poreklu kometa

    Ovoj grupi hipoteza pripadaju prve hipoteze Keplera i Heršla, kao i prva teorija koju je dao Laplas. Savremene osnove teorije o međuzvezdanom poreklu kometa postavio je Litlton 1948. godine. Zajedničko za većinu pristalica ovog tipa teorija je to da oni uvođenje Ortovog oblaka smatraju veštačkim i uglavnom ne prihvataju indirektne dokaze o njegovom postojanju.

    Teorija Litltona je bazirana na prolasku Sunca sa planetama kroz homogeni međuzvezdani oblak. Privučene od strane Sunca čestice oblaka počinju da opisuju hiperbole sa Suncem u žiži. Sve ove hiperbole se presecaju duž linije paralelne vektoru relativne brzine Sunca u odnosu na oblak kroz koji prolazi. Duž te linije odvija se akrecija koja dovodi do formiranja jezgra novih kometa. Tokom ovog procesa zbog nastajanja neelastičnih sudara čestice gube deo svoje kinetičke energije pa se hiperbolično kretanje može pretvoriti parabolično ili eliptično.

    Danas se smatra da bi ovakva akrecija zaista morala da se dogodi prilikom prolaska Sunca kroz neku maglinu, ali nije jasno da li tim putem nastaju baš komete. Takođe, smatra se i da su komete nešto kompaktnije građe (manje i gušće) nego što ova teorija predviđa.

    Zbog ovih teškoća poslednjih godina aktuelna je i hipoteza o zahvatamnju čitavih kometa iz međuzvezdanog prostora. Veliki je broj autora koji dozvoljavaju mogućnost postojanja velikog broja kometolikih tela u međuzvezdanom prostoru. Ove komete kreću se duž galaktocentričnih orbita sličnim onima koje opisuju zvezde. One komete koje se nađu u sferi dejstva Sunca (oko 60.000 AU) mogu biti zahvaćene gravitacijom naše zvezde. Po teoriji verovatnoće, najveći broj zahvata odigraće se na velikim udaljenostima od Sunca. Takve komete će se kretati hiperboličnim orbitama i uvek će ostati na velikoj udaljenosti od nas, van domašaja naših posmatranje. Komete koje bivaju zahvaćene na eliptične orbite mogu postati vidljive jedino ako su im putanje vrlo izdužene. Ostale će obilaziti oko Sunca na velikoj udaljenosti, izvan planetarnog regiona.

    Prilikom jednog susreta Sunca sa gasnim oblakom moglo bi biti zahvaćeno oko 1015 kometa, i to privremeno, na nekoliko miliona godina. Kao posledica više ovakvih uzastopnih prolaska nastao bi kvazi ravnotežni oblak oko Sunca, na udaljenosti od oko 50.000 AU u kome bi se nalazilo oko 1011 kometa. Ovaj opis odgovara opisu Ortovog oblaka sa tom razlikom što u ovom slučaju oblak nije samo hipotetički uveden već je on prirodna posledica uslova u međuzvezdanom prostoru.

Slične teme

  1. Dva operativna sistema?
    Autor Bacvanin u forumu Softverski problemi
    Odgovora: 14
    Poslednja poruka: 11.02.2007, 12:01

Tagovi za ovu temu

Vaš status

  • Ne možete pokrenuti novu temu.
  • Ne možete poslati odgovor.
  • Ne možete dodati priloge
  • Ne možete prepraviti svoje poruke
  •